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Stress Produces Aversion and Potentiates Cocaine Reward by
Releasing Endogenous Dynorphins in the Ventral Striatum to
Locally Stimulate Serotonin Reuptake
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Activation of the dynorphin/k-opioid receptor (KOR) system by repeated stress exposure or agonist treatment produces place aversion,
social avoidance, and reinstatement of extinguished cocaine place preference behaviors by stimulation of p38cc MAPK, which subse-
quently causes the translocation of the serotonin transporter (SERT, SLC6A4) to the synaptic terminals of serotonergic neurons. In the
present study we extend those findings by showing that stress-induced potentiation of cocaine conditioned place preference occurred by
a similar mechanism. In addition, SERT knock-out mice did not show KOR-mediated aversion, and selective reexpression of SERT by
lentiviral injection into the dorsal raphe restored the prodepressive effects of KOR activation. Kinetic analysis of several neurotransport-
ers demonstrated that repeated swim stress exposure selectively increased the V, .. but not K, of SERT without affecting dopamine
transport or the high-capacity, low-affinity transporters. Although the serotonergic neurons in the dorsal raphe project throughout the
forebrain, a significant stress-induced increase in cell-surface SERT expression was only evident in the ventral striatum, and not in the
dorsal striatum, hippocampus, prefrontal cortex, amygdala, or dorsal raphe. Stereotaxic microinjections of the long-lasting KOR antag-
onist norbinaltorphimine demonstrated that local KOR activation in the nucleus accumbens, but not dorsal raphe, mediated this stress-
induced increase in ventral striatal surface SERT expression. Together, these results support the hypothesis that stress-induced
activation of the dynorphin/KOR system produces a transient increase in serotonin transport locally in the ventral striatum that may
underlie some of the adverse consequences of stress exposure, including the potentiation of the rewarding effects of cocaine.

et al., 2010; Knoll and Carlezon, 2010). However, the neuronal
sites of action and signaling mechanisms responsible for these
behaviors are not yet understood.

Sustained KOR activation by stress-induced release of endog-
enous dynorphins leads to G-protein receptor kinase 3 (GRK3)-

Introduction

Although acute stress exposure can produce proadaptive re-
sponses, prolonged stress exposure can evoke maladaptive re-
sponses including increased risk of mood disorders and drug
addiction (Koob, 2008; Krishnan and Nestler, 2008). Prior stud-

ies have identified the endogenous dynorphin/k-opioid receptor
(KOR) system as a key regulator of this stress response in animal
models of depression-like and addiction-like behaviors (Bruchas
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dependent, p38a mitogen-activated protein kinase (MAPK)
activation, which has been implicated previously in mediating
both aversive effects of stress and stress-induced reinstatement of
drug seeking (Bruchas et al., 2007a, 2011; Land et al., 2009). In
addition, a possible role for KOR-mediated regulation of sero-
tonin transporter (SERT, SLC6A4) by p38a MAPK has been sug-
gested (Bruchas et al., 2011), although the underlying kinetic
mechanisms, brain region(s) involved, and transporter selectivity
of this effect remains unknown. Altered SERT and dopamine
transporter (DAT; SLC6A3) functions have been linked to stress,
prodepressive, and proaddictive behaviors (Kuhar, 1992; Lesch et
al., 1996; Heinz et al., 1998; Malison et al., 1998; Laasonen-Balk et
al., 1999; Sora et al., 2001; Lira et al., 2003; Wellman et al., 2007).
Interestingly, previous reports demonstrated a role for p38
MAPK in the modulation of SERT and DAT function in vitro
(Zhu et al., 2004, 2005; Samuvel et al., 2005), further supporting
the suggested role for this MAPK in monoamine transport regu-
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lation. Monoamines can also be sequestered by low-affinity,
high-capacity transporters such as the organic cation transport-
ers (Octs) and the plasmalemmal monoamine transporters
(Daws, 2009; Hagan et al., 2011). Stress exposure has been shown
to decrease the function of Oct3 at micromolar concentrations of
serotonin (5-HT) (Baganz et al., 2010), although a role for KOR
was not assessed.

In the present study, we used rotating disk electrode voltam-
metry (RDEV) to measure neurotransmitter uptake kinetics in
synaptosomal preparations (Earles and Schenk, 1998; Schenk et
al., 2005; Hagan et al., 2010). To determine whether stress expo-
sure can regulate these transporters, we measured uptake of 5>-HT
by SERT, dopamine (DA) by DAT, and 5-HT and DA by low-
affinity, high-capacity transporters following acute or repeated
stress exposure, direct KOR activation, or during nicotine with-
drawal. To determine whether stress exposure can regulate the
surface expression of SERT, we used a biotinylation approach to
label cell surface proteins. In this study, we found that rather than
having a global effect on serotonergic tone, repeated stress expo-
sure selectively regulated SERT function via p38 MAPK in the
synaptic terminals of dorsal raphe (DR) neurons projecting to
the ventral striatum (VS). We posit that this stress-induced
alteration in ventral striatum surface SERT expression results
in a transient and localized hyposerotonergic state in the nu-
cleus accumbens, an effect that may underlie prodepressive
and proaddictive behaviors.

Materials and Methods

Animals and housing

Male C57BL/6 mice (Charles River Laboratories) or transgenic mice on a
C57BL/6 genetic background weighing 18—-30 g were used in these ex-
periments. Homozygous GRK3 knock-out (—/—) (Peppel et al., 1997),
SERT knock-out (—/—) (Jackson Laboratories), KOR (—/—) (Hough et
al., 2000), and respective wild-type (WT) (+/+) littermate control mice
were prepared by heterozygous crosses and genotyped as described pre-
viously (Xu etal., 2004; Hagan et al., 2010). Mice were group housed, two
to four per cage, and the housing rooms were maintained on a 12 h
light/dark cycle (lights on at 07:00) with food pellets and water available
ad libitum. Animal procedures were approved by the University of Wash-
ington Institutional Animal Care and Use Committee.

Generation of p38a conditional knock-out (p38aCKO™*)
transgenic mice

Breeding. A floxed p38a MAPK mouse line (Nishida et al., 2004) with
loxP sites flanking the third exon of p38a was obtained from the RIKEN
Bioresearch Center (Tsukuba, Japan). p38a’®" heterozygotes were
crossed to mice broadly expressing Cre recombinase under the Mox2
promoter (Tallquist and Soriano, 2000) to generate p38a/*; Mox2°"*/*
heterozygotes bearing a null p38« allele no longer susceptible to Cre
recombination, thereby guarding against ectopic germ-line excision of
the floxed p38« allele during later generations of breeding. The null
p38a® allele was segregated away from the Mox2-Cre allele by backcross-
ing with C57BL/6 wild-type mice.

The p38a®’* mice globally heterozygous for p38a were then crossed
to the ePetl-Cre line (Scott et al., 2005) to yield pSSaAH' mice, also
heterozygous for ePet1-Cre. ePetl-Cre is a transgene driven by an en-
hancer element for a transcription factor (Petl) that is uniquely ex-
pressed in serotonergic neurons (Scott et al., 2005). These mice were then
mated with p38a'®°* mice to give p38a™/*; ePet1“"™ conditional
knock-out (CKO) progeny ( p38aCKO") as well as p38a™™~ ( p38a™/1°%)
and p38a’** (p38a™’*) mice, which can be regarded as littermate con-
trols carrying one or two functional p38« alleles, respectively. Condi-
tional knock-out mice showed no apparent differences in growth,
lifespan, or overt health from either their p38a*/°* (heterozygote) or
functionally wild-type littermates, and were produced in expected Men-
delian frequency (Bruchas et al., 2011).
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Genotyping. Mice weaned at 28 d of age were briefly anesthetized with
isoflurane (Hospira), and a 0.5 cm tail biopsy was obtained. Tail tissue
was digested by proteinase K overnight and genomic DNA purified using
Qiagen DNEasy columns according to manufacturer’s instructions. Tail
DNA was then used as a template for PCR using Promega GoTaq Flexi
polymerase with one of two buffers (5X Green GoTaq Flexi, Promega
catalog #M8911, or TagDNA polymerase 10X PCR reaction buffer, Pro-
mega catalog #M1902) used depending on the reaction. PCR products
were then resolved on a 1.5% agarose electrophoresis gel and photo-
graphed under UV illumination for analysis.

PCR screening was performed using the following primers. A3 (5'-
ATGAGATGCAGTACCCTTGGAGACCAGAAG-3") and A4 (5'-AG
CCAGGGCTATACAGAGAAAAACCCTGTG-3") were used for the floxed
and wild-type p38a alleles, giving bands of 230 and 180 bp, respectively.
Primers Al (5'-CCACAGAAGAGATGGAGCTATATGGATCTC-3’) and
Ad were used to detect the null p38a* allele as a 420-bp PCR product. The
Mox2-Cre and ePetl-Cre transgenes were detected using 5'-AGCG
TTCGAACGCACTGATTTCG-3" and 5-CGCCGTAAATCAATCGAT
GAGTTG-3', yielding a 330 bp band.

Drugs and chemicals

Cocaine-HCl, norbinaltorphimine (norBNI)-HCI, and (#)U50,488(2-
(3,4-dichlorophenyl)-N-methyl-N-[(1R,2R)-2-pyrrolidin-1-ylcyclohexyl]
acetamide) were provided by the National Institute of Drug Abuse Drug
Supply Program (Bethesda, MD) and were dissolved in 0.9% saline. (—)-
Nicotine hydrogen tartrate salt [(—)-1-methyl-2-(3-pyr-idyl)pyrrolidine (+)-
bitartrate salt (nicotine) ] was purchased from Sigma and was dissolved in
0.9% saline. Citalopram hydrobromide was from Tocris Bioscience and
was dissolved in 0.9% saline. KCl, MgSO,, paraformaldahyde, and
Tween-20 were from Fisher Scientific. CaCl,, KH,PO,, NaCl, and
NaHCO; were from JT Baker. Bovine serum albumin (BSA), CHAPS,
EDTA, glucose, HEPES, Na-deoxycholate, Ponceau-S reagent, sodium
dodecyl sulfate, sucrose, Tris buffer, and Triton X-100 were from Sigma-
Aldrich. GBR 12935 (1-(2-(diphenylmethoxy)ethyl)-4-(3-phenylpropyl)
piperazine; DAT inhibitor), nisoxetine hydrochloride [norepinephrine
transporter (NET) inhibitor], and paroxetine hydrochloride (SERT in-
hibitor) were from Sigma-Aldrich and were dissolved in physiological
buffer as described previously (Hagan et al., 2010). Dopamine hydro-
chloride and serotonin hydrochloride were from Sigma-Aldrich and
were dissolved in pH 7.2 PBS as described previously (Hagan etal., 2010).
Glycine and powdered milk were from Bio-Rad. EZ-link Sulfo-NHS-SS-
Biotin was from Pierce.

Forced swim stress

Mice were exposed to a modified Porsolt forced swim stress as described
previously (Porsolt et al., 1977; McLaughlin et al., 2003a). All swim ses-
sions were performed in 30 = 1°C water. After each swim session, mice
were removed, towel dried, and returned to their home cage for at least 6
min before further testing. For acute stress exposure (A-FSS), mice were
exposed to one 15 min swim 10 min before decapitation and synapto-
some generation. For repeated forced swim stress (R-FSS), mice were
exposed to one 15 min swim, and 24 h later were exposed to four 6 min
swims, each separated by a 6 min break in the home cage, 10 min before
decapitation and synaptosome generation or final cocaine-conditioned
place preference (CPP) (see below). For repeated stress exposure recov-
ery (R-Recovery), mice were exposed to one 15 min swim, and 24 h later
were exposed to four 6 min swims, each separated by a 6 min break in the
home cage, and then 24 h later were decapitated and synaptosomes were
prepared. For acute stress exposure recovery (A-Recovery), mice were
exposed to one 15 min swim, and then 24 h later were decapitated and
synaptosomes were prepared.

Cocaine conditioned place preference

Mice were used in a balanced three-compartment place-conditioning
apparatus as described previously (Schindler et al., 2010). Noldus Etho-
vision software (version 3.0; Norldus) was used to analyze movement
through each compartment recorded previously using video capture
(Canon ZR90) from above. Briefly, on Day 1, mice were tested for initial
place preference bias; mice spending >720 s in the middle chamber or
spending triple the amount of time in one of the outer chambers over the
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other outer chamber were excluded from the study. An unbiased design
was used; approximately half the animals received cocaine in their non-
preferred box (n = 99) and half in their preferred box (n = 90), and
pretest time spent in the subsequently drug paired box was equivalent to
pretest time spent in the subsequently saline paired box (drug paired box
mean, 674 * 9.6 s, n = 189; saline paired box mean, 701 = 10.6 s, n =
189; unpaired, two-sample ¢ tests, p > 0.05). On Days 2 and 3, mice were
administered saline (10 ml/kg of body weight, s.c.) and confined to their
assigned saline-paired compartment for 30 min in the morning, and then
4 h later were administered cocaine (15 mg/kg, s.c.) and confined to their
assigned drug-paired compartment for 30 min in the afternoon. On Day
4 of testing, mice were assessed for postconditioning place preference.
Some mice were exposed to one 15 min FSS 2 h following completion of
cocaine training on Day 3 and then on Day 4 were exposed to four 6 min
swims before postconditioning preference testing. On Day 4, some mice
were pretreated with either saline (10 ml/kg of body weight, i.p.) or
citalopram (15 mg/kg, i.p.) 30 min before administration of either saline
(10 ml/kg of body weight, i.p.) or U50,488 (5 mg/kg, i.p.) 60 min before
postconditioning preference testing. Cocaine CPP scores were calculated
as time spent in the drug-paired compartment before training subtracted
from time spent in the drug-paired compartment after conditioning.

Conditioned place aversion

Methods are the same as those used for cocaine CPP except that on Days
2and 3, mice were administered saline (10 ml/kg of body weight, i.p.) and
confined to their assigned saline-paired compartment for 30 min in the
morning, and then 4 h later were given U50,488 (2.5 mg/kg, i.p.) and
confined to their assigned drug-paired compartment for 30 min in the
afternoon. U50,488 conditioned place aversion (CPA) scores were calcu-
lated as time spent in the drug-paired compartment before training sub-
tracted from time spent in the drug-paired compartment after training.

Chronic nicotine exposure

Mice were administered saline (four injections of 10 ml/kg of body
weight, s.c.; 2 h apart) or nicotine (20 mg/kg/d, s.c.; four injections of 5
mg/kg; 2 h apart) for 6 d. RDEV was carried out on Day 8. The mice
showed tolerance to the hypolocomotor effects of nicotine after repeated
dosing (data not shown), but specific behavioral signs of nicotine with-
drawal were not further documented.

Preparation of brain synaptosormes

Mice were decapitated, whole-brain or specific brain regions were dis-
sected, and synaptosomes prepared as described previously (Hagan et al.,
2010). The synaptosomal preparations were resuspended in 5 ml preoxy-
genated Krebs—Ringer—-HEPES (KRH) buffer [containing (in mm) 124
NaCl, 1.8 KCl, 1.3 MgSO,, 1.24 KH,PO,, 2.5 CaCl,, 26 NaHCO,, 10
glucose] and maintained blanketed with 95% O,/5% CO, gas in a 50 ml
conical tube on ice.

Rotating disk electrode voltammetry
RDEV isan electrochemical technique used to measure neurotransmitter
uptake kinetics (Earles and Schenk, 1998; Schenk et al., 2005; Hagan et
al,, 2010). A voltage potential sufficient to oxidize an electroactive neu-
rotransmitter is applied to the synaptosome suspension. When 5-HT or
DA is added, a small proportion of substrate transfers electrons to the
electrode surface, producing a temporally resolved detection current
proportional to the concentration of extrasynaptosomal 5-HT or DA.
RDEYV can be used to measure uptake kinetics for DAT, NET, SERT, and
low-affinity, high-capacity transporter systems (Burnette et al., 1996;
Earles and Schenk, 1998; Schenk et al., 2005; Hagan et al., 2010, 2011).
As described previously (Hagan et al., 2010), a Pine Instruments
AFMDO03 glassy carbon electrode was used. The electrode was lowered
into an electrochemical well and rotated at 3000 rpm for 5-HT uptake
studies and 2000 rpm for DA uptake studies. A constant potential of
+550 mV was applied for 5-HT uptake studies and +450 mV for DA
uptake studies relative to a Ag/AgCl reference electrode. After back-
ground subtraction, the initial velocities of 5-HT or DA uptake by syn-
aptosomal preparations were calculated from the linear slope of the
initial zero order portion of the plot of [5-HT] versus time or [DA] versus
time. Data were normalized to synaptosomal protein concentration us-
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ing a bicinchoninic acid colorimetric based assay (Pierce) using BSA as
the standard. Uptake rates were expressed as femtomoles of 5-HT or DA
per second per milligram protein.

5-HT studies
SERT-specific uptake. For control experiments, synaptosomal prepara-
tions were allowed to stabilize for 10 min in the presence of 100 nm
nisoxetine and 1 um GBR 12935 (selective NET and DAT inhibitors,
respectively) (see Fig. 2a, control trace). To measure nonspecific 5-HT
uptake, synaptosomal preparations were allowed to stabilize for 10 min
in the presence of 100 nm nisoxetine, 1 umM GBR 12935, and 1 um parox-
etine (see Fig. 2a, paroxetine trace). Once a stable baseline was reached,
5-HT was added (10, 30, 100, 300, or 1000 nM final concentration), and
uptake was recorded for 3 min. The slope of uptake by the paroxetine-
treated synaptosomes ( paroxetine) was subtracted from the slope of up-
take by the non-paroxetine-treated synaptosomes (control) to obtain
SERT-specific uptake velocities (see Fig. 2a). For all studies except the
SERT Kkinetic analysis experiments, 100 nm 5-HT (final concentration)
was used, as 100 nm was determined previously to be the SERT K| using
RDEV and a synaptosomal preparation (Hagan et al., 2010).
Low-affinity uptake. The slope of uptake by the paroxetine-treated
synaptosomes (paroxetine) was used to obtain 5-HT uptake by low-
affinity, high-capacity transporters (see Fig. 2a) (see the aforementioned
experimental conditions).

DA studies
DAT-specific uptake. For control experiments, synaptosomal prepara-
tions were allowed to stabilize for 10 min in the presence of 100 nm
nisoxetine and 1 uM paroxetine. To measure nonspecific DA uptake,
synaptosomal preparations were allowed to stabilize for 10 min in the
presence of 100 nM nisoxetine, 1 uMm paroxetine, and 1 um GBR 12935.
Once a stable baseline was reached, DA was added (30, 100, 300, 1000, or
3000 nM final concentration), and uptake was recorded for 3 min. The
slope of uptake by the GBR 12935-treated synaptosomes (GBR 12935)
was subtracted from the slope of uptake by the non-GBR 12935-treated
synaptosomes (control) to obtain DAT-specific uptake velocities.
Low-affinity uptake. The slope of uptake by the GBR 12935-treated
synaptosomes (GBR 12935) was used to obtain DA uptake by low-
affinity, high-capacity transporters.

Purification, biotinylation, and Western blotting of synaptosomes

Whole-brain and brain region-specific synaptosomes were prepared as
described previously (Hagan et al., 2010), except protease and phospha-
tase inhibitors (Calbiochem) were added to each buffer. For brain region
studies, tissue from two to four mice were pooled for each independent
measure (n). Synaptosomes were purified by layering over a sucrose
gradient consisting of 2.6 ml each of 0.85, 1.0, and 1.2 M sucrose (top to
bottom) and were centrifuged at 85,000 X g for 2 h at 4°C. Purified
synaptosomes were collected and appeared as a creamy colored band at
the interface of the 1.0 and 1.2 M sucrose fractions. The purified synap-
tosomes were washed once with 0.32 M sucrose and then once with KRH
buffer. After protein concentration determination, the purified synapto-
somes were biotinylated using the EZ-link Sulfo-NHS-SS-Biotin to label
cell surface proteins, according to manufacturer’s instructions. Excess
biotin was quenched with 100 mwm glycine, and synaptosomes were lysed
in RIPA lysis buffer (10 mm Tris-HCI, pH 7.4, 150 mm NaCl, 1 mm EDTA,
1% Triton X-100, 0.1% sodium dodecyl sulfate, 1% sodium deoxy-
cholate, 1% CHAPS, and protein and phosphatase inhibitors). The ly-
sates were rocked at 4°C for 45 min and then centrifuged at 15,000 rpm
for 45 min. Supernatants were incubated with neutravidin beads (Pierce
Biotechnology) overnight at 4°C to capture the cell surface biotinylated
proteins. Beads were then pelleted, an aliquot of each supernatant (non-
biotinylated proteins) was saved, and the remaining supernatant was
aspirated. Beads were then washed with RIPA buffer, and bound proteins
were extracted with Laemmli’s buffer. To obtain total SERT protein lev-
els, before incubation with neutravidin beads, an aliquot of each biotin-
ylated lysate was extracted in Laemmli’s buffer. Surface (biotinylated),
intracellular (nonbiotinylated), and total protein samples were then elec-
trophoresed using 10% tris-glycine gels and processed for Western blot-
ting. The blots were first stained with Ponceau-S to visualize total
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proteins. Blots were then washed three times with water and 1X Tris
buffered saline with Tween-20 (TBS-T), and then blocked for 1 h in block
buffer (2.5% milk, 2.5% BSA, 1X TBS-T). Blots were then probed over-
night at room temperature in 2.5% BSA, 2.5% milk, 1 X TBS-Tween 20
with the anti-SERT antibody (1:500; Santa Cruz Biotechnology), which
recognizes predominantly the 75 kDa SERT species and the anti-calnexin
antibody (1:4000; Enzo Life Sciences) to asses the extent of biotinylation
of nominally intracellular proteins. Blots were washed three times with
1X TBS-T and then incubated for 1 h at room temperature with 680
donkey anti-goat or 800 donkey anti-rabbit (1:10,000; LI-COR) in Li-
Cor blocking buffer and 2.5% BSA, 2.5% milk, and 1 X TBS-T (1:1 dilu-
tion). Blots were then washed three times with 1 X TBS-T and imaged as
described previously (Bruchas et al., 2007a). The band densities for sur-
face and total SERT samples were quantified and normalized by the
densities of calnexin in the corresponding total SERT sample as described
previously (Samuvel et al., 2005).

Cannulation and intracerebroventricular injections

As described previously (Land et al., 2008), isoflurane-anesthetized mice
were mounted on a stereotaxic alignment system. Guide cannulas were
placed in the lateral ventricle at 1.0 mm lateral, 0.4 mm posterior from
bregma, and 3.0 mm below the skull, and were anchored with screws
using dental cement. Mice were allowed to recover from surgery in their
home cage for 68 d. Injection volumes (1 ul) of saline or corticotropin
releasing factor (CRF; 1 ug; to induce dynorphin release and subsequent
KOR activation) were performed during a 2 min period. Internal cannu-
las were removed 1 min after injection.

Immunohistochemistry

Cannulated mice were injected as described above, and 30 min later were
anesthetized with pentobarbital and intracardially perfused with ice-cold
4% paraformaldehyde in phosphate buffer (PB). Brains were dissected,
postfixed with 4% paraformaldehyde for 2 h at 4°C, cryoprotected with a
30% (w/v) sucrose solution at 4°C for 3 d, cut into 40 wm sections, and
processed for immunohistochemistry. Sections containing the nucleus
accumbens were washed three times in PBS and blocked in PBS contain-
ing 0.3% Triton X-100 and 5% normal goat serum. Sections were then
incubated with a mixture of mouse anti-glutamic acid decarboxylase 67
(GAD67) (Millipore Bioscience Research Reagents) and rabbit anti-
phospho-KOR Ab as described previously (McLaughlin et al., 2004; Bru-
chas et al., 2007a). Sections were then washed six times in PBS and
incubated for 2 h at room temperature in Alexa Fluor 488 goat anti-
mouse IgG (1:500; Invitrogen) and Alexa Fluor 555 goat anti-rabbit IgG
(1:500; Invitrogen). Sections were washed six times in PBS, rinsed threes
times for 10 min in PB, and then mounted on glass slides with
Vectashield (Vector Labs) and sealed with nail polish for microscopy.

Viral vector design and production

Lenti-hSERT was developed based on the lentiviral construct expressing
the B2 subunit of the nicotinic acetylcholine receptor under the mouse
phosphoglycerol kinase (PGK) promoter, published by the Changeux
group (Maskos et al., 2005). The 82 subunit was replaced with the human
SERT sequence using Xhol and Xbal restriction sites. Human and mouse
SERT share a 92.5% sequence identity. We used the hSERT sequence in
the present study as the first step toward identifying possible sequence-
specific mechanisms responsible for p38-mediated SERT translocation
of the human transporter. The lenti-hSERT vector is a bicistronic con-
struct expressing human SERT and GFP; eGFP is preceded by an internal
ribosomal entry sequence (IRES2) allowing for separate translation of
eGFP from the same transcript. Gene expression is under the control of
the PGK promoter. The integrated virus was rendered replication incom-
petent by deletion of the U3 region of the 3’ long terminal repeat
(Zufferey et al., 1998; Sirven et al., 2001). Sequences have been incorpo-
rated to enhance RNA stability, transgene expression, and infection of
nondividing cells (Maskos et al., 2005). The viral expression plasmid was
inserted into the pUC18 plasmid. As described previously (Land et al.,
2009), a fee-for-service facility at the Fred Hutchinson Cancer Research
Center produced the viral particles. In brief, viral particles were produced
by cotransfection of the vector plasmid with a packaging plasmid and the
vesicular stomatitis Indiana virus glycoprotein G protein plasmid, media
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was collected, and viral particles were isolated by filtration and ultracen-
trifugation 2472 h following transfection. Viral titer obtained was 6.2 X
107 TU/ml. Before mouse injection, viral preparations were confirmed to
be free of replication competent lentivirus by ELISA against the p24
capsid protein over a course of 4 weeks.

Stereotaxic microinjections (norBNI and lentiviral constructs)
Isoflurane-anesthetized mice were mounted on a stereotaxic alignment
system (David Kopf Instruments). Mice were injected bilaterally in the
ventral striatum (1.00 mm lateral, 0.98 mm anterior, 5 mm depth from
bregma) or unilaterally in the dorsal raphe (0.00 mm lateral, 4.65 mm
posterior, 3.85 mm depth) with 2.5 ug per side of norBNT or the lentiviral
construct (dorsal raphe only), as described previously (Land et al., 2009;
Smith et al., 2012). Animals were allowed to recover for at least 5 d after
norBNI injection before sacrifice, or 3 weeks after lentiviral injection
before CPA testing. NorBNI is a selective KOR antagonist whose effects
last >21 d following a single dose (Horan et al., 1992; Bruchas et al.,
2007b).

Data analysis

Data are expressed as means = SEM. Student’s unpaired, two-sample ¢
tests were used to determine statistical differences between pairwise com-
parisons. Differences between groups were determined by one- and two-
way ANOVA with overall @ = 0.05 (p < 0.05). All post hoc pairwise
comparisons were Bonferroni corrected. Concentration—response
curves were fit using nonlinear regression analysis (Michaelis—Menten
equation) to obtain best-fit values for K, and V, ., and to determine
whether best-fit values for each parameter were significantly different
after R-FSS exposure. Statistical analyses were conducted using Graph
Pad Prism 4.0.

Results

Stress-induced potentiation of cocaine CPP is mediated by
GRK3 and p38a MAPK in serotonergic neurons

Previous studies have shown that KOR activation of p38 MAPK
requires receptor phosphorylation by GRK3 followed by
B-arrestin recruitment (Bruchas et al., 2006, 2007a), and both
GRK3 and p38a MAPK expression in serotonergic neurons are
required for KOR-mediated CPA, but the signal transduction
pathway required for stress-induced potentiation of cocaine CPP
remains unknown. To assess the role of GRK3 in KOR-mediated
potentiation of cocaine CPP, GRK3 (—/—) and (+/+) litter-
mates were exposed to one 15 min FSS on Day 3, 2 h after com-
pletion of cocaine training, and four 6 min FSS on Day 4,
finishing 10 min before the final CPP posttest. GRK3 (+/+) and
(—/—) control mice did not show different place preference
scores [n = 13-21; unpaired, two-tailed ¢ test between control
GRK3 (+/+) and (—/—) mice; t3,, = 0.344; p > 0.05], demon-
strating that lack of GRK3 did not affect basal preference for
cocaine. GRK3 (+/+) mice exposed to repeated FSS showed a
significant potentiation of cocaine CPP [n = 13-21; two-way
ANOVA, interaction of genotype by R-FSS, F(; 5,y = 9.638, p <
0.003; followed by Bonferroni’s post hoc, GRK3 (+/+) littermate
controls vs GRK3 (+/+) R-FSS, p < 0.05] (Fig. 1a). In contrast,
GRK3 (—/—) mice repeatedly exposed to FSS did not show a
change in cocaine CPP [Bonferroni’s post hoc, GRK3 (—/—) con-
trol vs GRK3 (—/—) R-FSS, p > 0.05] (Fig. 1a). These data sug-
gest that GRK3 was required for stress-induced potentiation of
cocaine CPP and raise the possibility that this effect may be p38
mediated.

To directly assess the role for p38 MAPK in R-FSS-induced
potentiation of cocaine CPP, we generated CKO mice selectively
lacking p38a in serotonergic cells (for a detailed description of
CKO generation, see Materials and Methods). p38a*"** and
p38aCKO®™ control mice did not show different place prefer-
ence scores (n = 14-20; unpaired, two-tailed t test between con-
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Figure 1. GRK3 and p38c MAPK in serotonergic neurons mediate stress-induced potentia-
tion of cocaine CPP. a, Place preference test data demonstrating that GRK3 was required for
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trol p38a”" and p38aCKO™; t, = 0.823; p > 0.05),
demonstrating that lack of p38« in serotonergic neurons did not
affect basal place preference for cocaine. p38a”*"** and
p38aCKO" mice were exposed to one 15 min FSS on Day 3,2 h
after completion of cocaine training, and four 6 min FSS on Day
4, finishing 10 min before the final CPP posttest. p38a*/** con-
trol mice exposed to repeated FSS showed a significant potentia-
tion of cocaine CPP (n = 14-20; two-way ANOVA, interaction
of genotype by R-FSS, F(1>5SE = 5.729, p < 0.02; followed by
Bonferroni’s post hoc, p38a“/°* control vs p38a“/°* R-ESS, p <
0.05) (Fig. 1b). Alternatively, p38aCKO®* mice exposed to re-
peated FSS did not show a change in cocaine CPP (Bonferroni’s
post hoc, p38aCKO" control vs p38aCKO?* R-FSS, p > 0.05),
demonstrating that p38a MAPK in serotonergic neurons was
required for stress-induced potentiation of cocaine CPP. Expres-
sion of Cre recombinase driven by the ePet promoter was previ-
ously shown to selectively excise p38a MAPK in serotonergic
neurons expressing tryptophan hydroxylase (TPH2-ir), but not
in non-TPH2-ir neurons in the dorsal raphe nucleus (Bruchas et
al,, 2011). The p38a™"** mice are the appropriate controls be-
cause they have the floxed allele on the same genetic background
(littermates), but express equivalent levels of p38a immunoreac-
tivity in cells that do not express Cre (Bruchas et al., 2011).

To further investigate the role of the serotonergic system in
stress-induced potentiation of cocaine CPP, mice were pretreated
with either saline (10 ml/kg of body weight, i.p.) or the selective
serotonin reuptake inhibitor (SSRI) citalopram (15 mg/kg, i.p.).
Then, 30 min later, mice were administered either saline (10
ml/kg of body weight, i.p.) or U50,488 (5 mg/kg, i.p.) 60 min
before postconditioning preference test. WT saline-pretreated
and WT citalopram-pretreated control mice did not show differ-
ent place preference scores (n = 10-20; unpaired, two-tailed ¢
test between saline pretreated and citalopram pretreated; t,9) =
0.22; p > 0.05), demonstrating that pretreatment with citalo-
pram did not affect basal preference for cocaine. Mice pretreated
with saline and then injected with U50,488 showed a significant
potentiation of cocaine CPP (n = 10-20; two-way ANOVA, in-
teraction of genotype by R-ESS, F(, 5,y = 7.70, p < 0.008; fol-
lowed by Bonferroni’s post hoc, saline plus saline vs saline plus
U50,488, p < 0.05) (Fig. 1c). Conversely, mice pretreated with
citalopram and then administered U50,488 did not show a
change in cocaine CPP (Bonferroni’s post hoc test, saline plus
U50,488 vs citalopram plus U50,488, p > 0.05), demonstrating
that SSRI pretreatment blocked k agonist-induced potentiation
of cocaine CPP.

Repeated swim stress, nicotine withdrawal-induced stress, or
pharmacological stress increases 5-HT uptake by SERT in a
norBNI-dependent manner

To determine whether stress exposure modulates 5-HT uptake by
SERT, RDEV was used to measure SERT function following the
addition of 5-HT to the electrochemical well containing a
suspension of mouse brain synaptosomes (Hagan et al., 2010).
The rate of 100 nm 5-HT uptake by synaptosomes prepared

<«

stress-induced potentiation of cocaine CPP (two-way ANOVA followed by Bonferroni’s post hoc
test; n = 13-21). b, Preference test data demonstrating that p38cx MAPK in serotonergic
neurons was required for stress-induced potentiation of cocaine CPP (two-way ANOVA followed
by Bonferroni’s post hoc test; n = 14-20). ¢, Preference test data demonstrating that
k-mediated potentiation of cocaine CPP was blocked by pretreatment with the SSRI citalopram
(two-way ANOVA followed by Bonferroni’s post hoc test; n = 10-20). Data are shown as
mean == SEM. *p < 0.05; **p < 0.01; ***p < 0.001. n.s., Not significant (p > 0.05).
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from C57BL/6 mice in the presence or ab-
sence of paroxetine was used to assess
uptake mediated by SERT (Fig. 2). SERT
(+/+) littermate mice showed paroxetine-
sensitive 5-HT uptake, whereas SERT (—/—)
mice showed no significant paroxetine-
sensitive uptake (Fig. 24, inset), confirm-
ing that SERT-specific uptake had been
isolated. Whole-brain  synaptosomes
from wild-type mice exposed to R-FSS
showed a significantly greater paroxetine-
sensitive 5-HT clearance rate than synap-
tosomes prepared from unstressed,
control C57BL/6 mice, as represented in
Figure 2, a and b, and quantified in Figure
2¢ (n = 6-9; two-way ANOVA, effect of
pretreatment, F; 55y = 9.077, p < 0.005;
effect of treatment, F(, ,5) = 7.19, p <
0.012; followed by Bonferroni’s post hoc,
control vs R-ESS, p < 0.05) (Fig. 2¢). The
increase in SERT uptake rate caused by
R-FSS was blocked by in vivo pretreat-
ment with the KOR antagonist norBNI
(10 mg/kg, i.p.) 24 h before the initial
swim (Bonferroni’s post hoc, R-ESS vs
norBNI plus R-FSS, p < 0.05) and was not
evident when synaptosomes were
prepared 24 h following R-FSS (n =
6—8; unpaired, two-tailed t test between
control and R-Recovery; £, = 0.48;
p > 0.05) (Fig. 2¢).

We showed previously that KOR acti-
vation is evident following exposure to
A-FSS, but A-FSS is not sufficient to cause
KOR-induced potentiation of cocaine
CPP (Schindler et al., 2010). Similarly, in
the current study, A-FSS exposure to one
15 min swim before synaptosomal prepa-
ration did not increase 100 nm 5-HT up-
take rate by SERT compared to control
mice (1 = 6—8; one-way ANOVA; F, ) =
0.063; p > 0.05) (Fig. 2d). In this para-
digm, R-FSS exposure occurred over 2 d.
Thus, it is possible that A-FSS exposure
might cause an increase in 5-HT uptake
by SERT ifa 24 h incubation period passed
between A-FSS exposure and synapto-
somal isolation. To investigate this possi-
bility, mice were exposed to A-FSS, and
then synaptosomes were prepared 24 h
later (A-Recovery) (Fig. 2d). Synapto-
somes from mice exposed to A-Recovery
did not show a significantly different 100
nM 5-HT uptake rate from control mice
(n = 6-8; one-way ANOVA; F, ) =
0.063; p > 0.05). Together, these results
suggest that repeated KOR activation by
R-FSS caused an increase in 100 nm 5-HT
uptake by SERT that recovered 24 h after
the final swim.

To assess the generality of the stress-
induced changes in SERT function, we
next examined changes in SERT function
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during withdrawal from repeated nicotine exposure, which can
be considered aversive (Kenny and Markou, 2001; Koob and Le
Moal, 2005), and k antagonists attenuated the expression of both
the physical (somatic signs and hyperalgesia) and affective
(anxiety-related behavior and conditioned place aversion) nico-
tine withdrawal signs (Jackson et al., 2010). Synaptosomes pre-
pared from mice in withdrawal 48 h following repeated exposure
to nicotine (20 mg/kg/d, s.c, for 6 d), showed a significantly in-
creased rate of 100 nM 5-HT uptake by SERT compared to syn-
aptosomes prepared from mice administered saline (10 ml/kg of
body weight, i.p.) on the same schedule (n = 7-8; two-way
ANOVA, interaction of norBNI and nicotine, F; ,,y = 8.712,p <
0.007; followed by Bonferroni’s post hoc, saline vs nicotine, p <
0.05) (Fig. 2e). The increase in SERT uptake rate evident during
nicotine withdrawal was blocked by pretreatment with the KOR
antagonist norBNI (10 mg/kg, i.p.) 1 h before the start of the
nicotine treatment paradigm (Bonferroni’s post hoc, nicotine vs
norBNI plus nicotine, p < 0.001), and norBNI pretreatment
alone had no effect on 100 nm 5-HT uptake by SERT (Bonferro-
ni’s post hoc, saline vs norBNI plus saline, p > 0.05).

Administration of the KOR agonist U50,488 was used as a
pharmacological stressor and provides a more selective KOR ac-
tivation than FSS exposure or withdrawal from nicotine. Synap-
sotomes prepared from mice administered U50,488 (5 mg/kg,
i.p.) 60 min before synaptosome generation showed a signifi-
cantly increased rate of 100 nm 5-HT uptake by SERT compared
to synaptosomes prepared from mice administered saline (10
ml/kg of body weight, i.p.) 60 min before synaptosome isolation
(n = 9-11; two-way ANOVA; effect of pretreatment, F(, 55, =
4.234, p < 0.047; effect of treatment, F, 55, = 4.825, p < 0.035;
followed by Bonferroni’s post hoc, saline vs U50,488, p < 0.05)
(Fig. 2f). This dose and timing were used based on behavioral
studies in which U50,488 administration significantly potenti-
ated cocaine or nicotine CPP when given 60 min before final
preference testing (Schindler et al., 2010; Smith et al., 2012). The
increase in SERT uptake rate by U50,488 was blocked by pretreat-
ment with the KOR antagonist norBNI (10 mg/kg, i.p.) 24 h
before U50,488 administration (Bonferroni’s post hoc, U50,488
vs norBNI plus U50,488, p < 0.05), and norBNI pretreatment
alone had no effect on 100 nm 5-HT uptake by SERT (Bonferro-
ni’s post hoc, saline vs norBNI plus saline, p > 0.05).

Repeated swim stress increases SERT V. without affecting
SERTK,,

An increase in 5-HT uptake by SERT following R-FSS exposure
might result from a stress-induced increase in SERT Vmax (in-
creased SERT synthesis or increased SERT expression at the
plasma membrane) or a decrease in SERT K, (increased catalytic
activity of SERT). To obtain values for V, ., and K, saturation
kinetic analyses of 5-HT uptake by SERT were conducted with
synaptosomes prepared from control or R-FSS-exposed C57BL/6
mice. R-FSS significantly increased the rate of 5-HT uptake by
SERT at 100 nm (n = 6-10; two-way ANOVA; interaction of
concentration and R-FSS, F5 ;) = 2.35, p < 0.049; followed by
Bonferroni’s post hoc, control vs R-FSS, p < 0.05), 300 nm (Bon-
ferroni’s post hoc, control vs R-FSS, p < 0.05), and 1 uM (Bonfer-
roni’s post hoc, control vs R-FSS, p < 0.001) 5-HT, but not at 10
or 30 nm (Bonferroni’s post hoc, control vs R-ESS, p > 0.05)
5-HT, compared to the rate of 5-HT uptake by SERT from con-
trol synaptosomes at the corresponding 5-HT concentration
(Fig. 3a). R-FSS significantly increased SERT V. for 5-HT (n =
6-10; nonlinear regression followed by comparison of fits;
F(182) = 4.91, p < 0.029) without affecting SERT Km for 5-HT
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(n = 6-10; nonlinear regression followed by comparison of fits;
F(1 82y = 0.86, p > 0.05) (Fig. 3a, inset).

Repeated swim stress does not increase DA uptake by DAT or
5-HT or DA uptake by low-affinity, high-capacity
transporters

To obtain V. and K,,, values for DAT (not established previ-
ously for this animal species, cellular preparation, or technique),
saturation kinetic analyses of DA uptake by DAT were con-
ducted. Synaptosomes prepared from mice exposed to R-FSS did
not show a significantly different rate of DA uptake by DAT atany
DA concentration tested (n = 6-11; two-way ANOVA; interac-
tion of concentration and R-FSS; F5 75, = 1.240, p > 0.05), com-
pared to synaptosomes prepared from control mice (Fig. 3b).
Similarly, R-FSS did not significantly change V. .. (n = 6-11;
nonlinear regression followed by comparison of fits; F(, g3, =
0.359, p > 0.05) or K,,, for DAT (n = 6—11; nonlinear regression
followed by comparison of fits; F(, 43, = 0.009, p > 0.05) (Fig. 3b,
inset), suggesting that R-FSS did not modulate DA uptake by
DAT under these assay conditions.

In addition to uptake by their respective transporters, both
5-HT and DA can be cleared by low-affinity, high-capacity trans-
porters (Daws, 2009; Hagan et al., 2011). The contribution to
uptake of these low-affinity, high-capacity transporters increases
as 5-HT concentration increases (Baganz etal., 2010; Hagan et al.,
2011). To investigate whether stress-induced KOR activation reg-
ulates these alternative uptake mechanisms, we examined the
uptake rate of 5-HT or DA in the presence of DAT, NET, and
SERT inhibitors following repeated stress (Fig. 3¢,d). Synapto-
somes prepared from mice exposed to R-FSS did not show a
significantly different rate of 5-HT uptake by low-affinity, high-
capacity transporters at any concentration of 5-HT tested (n =
6-9; two-way ANOVA; interaction of concentration and R-FSS;
Fs4 = 0.717, p > 0.05), compared to synaptosomes prepared
from control mice (Fig. 3¢). Similarly, no effect of R-FSS was seen
at any concentration of DA tested compared to synaptosomes
prepared from control mice (n = 6-11; two-way ANOVA; inter-
action of concentration and R-FSS; F s ;) = 0.259, p > 0.05) (Fig.
3d). 5-HT at 1 uMm and DA at 3 um are still below saturating
concentrations for these low-affinity, high-capacity transporters
(Fig. 3¢,d), and it is therefore possible that R-FSS has effects at
concentrations higher then those used in the current study; how-
ever, these results suggest that KOR activation by repeated stress
selectively increased SERT function without affecting DAT or the
low-affinity, high-capacity transporters.

Repeated swim stress increases SERT surface expression

An increase in SERT Vmax could arise from an increase in SERT
surface expression or an increase in SERT synthesis. To deter-
mine whether R-FSS increased SERT surface expression, purified
synaptosomes from control, R-FSS, norBNI, norBNI plus R-FSS,
and R-Recovery-exposed mice were biotinylated to selectively
label cell surface proteins. As a control for the specificity of cell-
surface labeling by the cell impermeant form of biotin, surface,
intracellular, and total samples were extracted with Laemmli’s
buffer and processed for Western blotting with the calnexin an-
tibody. Calnexin is an integral protein of the endoplasmic retic-
ulum and thus should not be available for labeling by biotin
(Samuvel et al., 2005). As shown in Figure 44, calnexin immuno-
reactivity is seen in the nonbiotinylated fraction and in the total
protein samples, but was absent in the surface samples, confirm-
ing that the majority of synaptosomes in each preparation were
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that the increase in SERT Vmax following

R-FSS was not a result of increased SERT

synthesis. Together, these data suggest
1 that R-FSS increases SERT Vmax for
5-HT by increasing SERT plasma mem-
brane surface expression.

GRK3 and p38a MAPK are required for
R-FSS-induced increases in SERT
function and surface expression

Control | R-FSS

Control

R-FSS | p=

fmol 5-HT / sec*mg

227 293 *

Activation of p38 MAPK has been shown

510 545 ns

Vmax Vmax
Km 167 121 ns Km

300 289 ns previously to regulate SERT function and

surface membrane expression (Zhu et al.,

0 . . . .
0 250 500 750 1000 0
[5-HT] nM

Low-affinity/High-capacity

25007 2500

o Control
A R-FSS

o Control
A R-FSS

220001
*U
? 1500

0 10007

1000
[DA] nM

Low-affinity/High-capacity

2000 3000 2004, 2005; Samuvel et al., 2005). In addi-
tion, KOR activation of p38 MAPK was
shown previously to occur by a GRK3-
arrestin-dependent mechanism in vivo and
in vitro (Bruchas et al., 2006). To assess the
role of GRK3 in KOR-mediated SERT reg-
ulation, GRK3 (—/—) and (+/+) litter-
mates were exposed to R-FSS or remained
in the home cage before synaptosomal gen-
eration. R-FSS significantly increased the
rate of 100 nm 5-HT uptake by SERT in
GRK3 (+/+) littermate controls [#n = 6-38;
two-way ANOVA; interaction of genotype
and R-FSS, F,, ,,, = 16.82, p < 0.0004; fol-
lowed by Bonferroni’s post hoc, GRK3

T r T . 0
0 250 500 750 1000 0
[5-HT] nM
Figure 3.  R-FSS increases SERT V,,,
transporters. a, Kinetic RDEV data demonstrating that R-FSS exposure increased SERT V,

ax

intact and biotin labeling of intracellular proteins did not occur
under these assay conditions.

To determine whether R-FSS increased SERT surface expres-
sion, surface proteins were extracted from intact synaptosomes
with Laemmli’s buffer and processed for Western blotting with
the SERT antibody. We found that R-FSS increased surface SERT
immunoreactivity compared to unstressed controls (n = 6-38;
two-way ANOVA; effect of pretreatment, F(,,,) = 7.284, p <
0.013; effect of treatment, F; ,,) = 10.02, p < 0.004; followed by
Bonferroni’s post hoc, control vs R-FSS, p < 0.01) (Fig. 4b). The
increase in SERT surface expression by R-FSS was blocked by
pretreatment with the KOR antagonist norBNI (10 mg/kg, i.p.)
24 h before the initial swim (Bonferroni’s post hoc, R-ESS vs
norBNI plus R-ESS, p < 0.05) and was not evident when synap-
tosomes were prepared 24 h after R-FSS (n = 6-8; unpaired,
two-tailed  test between control R-Recovery; £,,, = 0.339; p >
0.05) (Fig. 4b).

To determine whether R-FSS increased total SERT expression,
proteins were extracted from intact synaptosomes with Laem-
mli’s buffer and processed for Western blotting with the SERT
antibody. We found no change in total SERT immunoreactivity
following treatment (n = 6; two-way ANOVA; interaction of
norBNIand R-FSS; F(, ,4) = 0.528, p > 0.05) (Fig. 4¢), suggesting

1000
[DA] nM

without affecting SERT K, and does not modulate DAT or low-affinity, high-capacity
but did not change SERT K, (two-way
ANOVA followed by Bonferroni's post hoc; n = 6 —10). b, Kinetic RDEV data demonstrating that R-FSS exposure did not change the
rate of DA uptake by DAT at any concentration tested (two-way ANOVA; n = 6 —11). ¢, Kinetic RDEV data demonstrating that R-FSS
did not modulate 5-HT uptake by low-affinity, high-capacity transporters at any of the concentrations tested (two-way ANOVA;
n=6-9).d,Kinetic RDEV data demonstrating that R-FSS did not modulate DA uptake by low-affinity, high-capacity transporters
at any of the concentrations tested (two-way ANOVA; n = 6—11). Data are shown as mean == SEM. *p << 0.05; ***p < 0.001.

(+/+) control vs GRK3 (+/+) R-ESS, p <
0.001] (Fig. 5a). Alternatively, GRK3 (—/—)
mice exposed to R-FSS did not show an in-
crease in SERT uptake rates as compared to
GRK3 (—/—) control mice [Bonferroni’s
post hoc, GRK3 (—/—) control vs GRK3
(—/—) R-FSS, p > 0.05] (Fig. 5a).

These data suggest that GRK3 was re-
quired for KOR-induced increases in
5-HT uptake by SERT and raise the possi-
bility that this effect may be mediated by
KOR activation of p38 MAPK. To test this
hypothesis, p38a*"** and p38aCKO™*" mice were exposed to
R-FSS or remained in their home cage before synaptosomal gen-
eration. R-FSS increased the rate of 100 nm 5-HT uptake by
SERT in p38a™** mice (n = 6-8; two-way ANOVA; interac-
tion of genotype and R-FSS, F(, ,,) = 6.073, p < 0.021; fol-
lowed by Bonferroni’s post hoc, p38a™"°* control vs p38a™/'**
R-FSS, p < 0.01) compared to control mice of the same geno-
type (Fig. 5b). R-FSS had no effect on the rate of 100 nm 5-HT
uptake by SERT in p38aCKO®’* mice (Bonferroni’s post hoc,
p38aCKO™ control vs p38aCKO*™ R-FSS, p > 0.05) (Fig.
5b), demonstrating that p38a was required for R-FSS effects
on SERT function.

We next investigated whether GRK3 was required for R-FSS-
induced increase in SERT surface expression. We found that
R-FSS increased surface SERT immunoreactivity compared to
controls in the GRK3 (+/+) genotype [1n = 4; two-way ANOVA;
interaction of genotype and R-FSS, F, ;) = 7.267, p < 0.02;
followed by Bonferroni’s post hoc, GRK3 (+/+) control vs GRK3
(+/4) R-ESS, p < 0.01] (Fig. 5¢). The increase in SERT surface
expression by R-FSS was not seen in the GRK3 (—/—) genotype
[Bonferroni’s post hoc, GRK3 (—/—) control vs GRK3 (—/—)
R-FSS, p > 0.05] (Fig. 5¢), suggesting that GRK3 was required for
stress-induced increase in surface SERT expression.

2000 3000
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els, total protein was extracted with Laem- L |_|_
mli’s buffer and processed for Western Control norBNI R-Recov Control

blotting with the SERT antibody. As for
WT mice, we found no change in total
SERT immunoreactivity across GRK3 ge-
notypes or following R-FSS (n = 4; two-
way ANOVA; interaction of genotype and
R-FSS, F, 1, = 2.676, p > 0.05) (Fig. 5¢).
Similarly, we found no change in total
SERT immunoreactivity across p38a ge-
notypes or following R-FSS (n = 6-8;
two-way ANOVA; interaction of geno-
type and R-FSS, F(, 14, = 0.853, p > 0.05)
(Fig. 5f). Together, these data suggest that
the increase in SERT function and surface expression following
R-FSS was mediated by GRK3 and p38a MAPK in serotonergic
neurons.

Figure4.

surface and intracellular).

Repeated swim stress selectively increases SERT surface
expression in the ventral striatum

SERT expression is evident in multiple brain regions (Torres et
al., 2003), and the previous experiments in the present study were
conducted using whole-brain synaptosomes. To determine
whether R-FSS affected SERT in all of the serotonergic projec-
tions equivalently, we compared synaptosomes prepared from
grossly dissected brain regions. Surprisingly, we found that R-FSS
significantly increased surface SERT immunoreactivity com-
pared to controls only in the ventral striatum (VS; n = 6; un-
paired, two-tailed ¢ test; £, ) = 2.86, p < 0.017) (Fig. 64, red box).
R-FSS did not change surface SERT immunoreactivity compared
to controls in the medial prefrontal cortex (mPFC; n = 4; un-
paired, two-tailed ¢ test; ¢, = 0.171, p > 0.05), hippocampus
(n = 6; unpaired, two-tailed ¢ test; t,4) = 0.312, p > 0.05), dorsal
striatum (DS; n = 6; unpaired, two-tailed t test; £,y = 0.773,p >
0.05), amygdala (n = 4; unpaired, two-tailed f test; t,) = 0.372,
p > 0.05), or dorsal raphe (n = 4; unpaired, two-tailed ¢ test;
te) = 0.776, p > 0.05) (Fig. 6a). Similar to whole-brain synapto-
somes, we found no change in total SERT immunoreactivity across
the brain regions examined: mPFC (n = 6; unpaired, two-tailed ¢
test; £,y = 0.294, p > 0.05), hippocampus (# = 6; unpaired,
two-tailed t test; t,5, = 1.487, p > 0.05), DS (n = 6; unpaired,

R-FSSincreases SERT V.

norBNI R-Recov

‘nax DY increasing SERT surface expression. a, Representative Western blotimages demonstrat-

ing biotinylation of only surface proteins. Calnexin is an intracellular protein and thus should not appear in the surface samples. b,
Representative Western blot images and corresponding analysis showing that R-FSS increased SERT surface expression in a
norBNI-dependent manner that recovered 24 h after swim (two-way ANOVA followed by Bonferroni's post hoc; n = 6-8). ¢,
Representative Western blotimages and corresponding analysis showing that the R-FSS did not change total SERT expression. Data
are shown asmean == SEM. *p << 0.05; **p << 0.01. Surf, Surface; FT, flow through (intracellular sample); total, total protein (both

two-tailed t test; ¢,,) = 0.073, p > 0.05), VS (n = 6; unpaired,
two-tailed ¢ test; £,,) = 1.573, p > 0.05), amygdala (n = 3—4;
unpaired, two-tailed, t test; ¢5y = 0.886, p > 0.05), and DR (n =
4; unpaired, two-tailed t test; ¢, = 1.053, p > 0.05) (Fig. 6b).
Together, these data demonstrate that R-FSS significantly in-
creased surface SERT expression specifically in the ventral stria-
tum without changing total SERT levels or affecting cell surface
SERT in the other brain regions tested.

Repeated swim stress increases surface SERT expression in
the ventral striatum through activation of local k-opioid
receptors

KORs are expressed on the cell bodies of serotonergic DR neu-
rons and on the afferent nerve terminals projecting to the VS
(Tao and Auerbach, 2002; Land et al., 2009). Thus it is possible
that KOR activation in the DR or VS could mediate the increase
in surface SERT seen following R-FSS. To determine which pool
of KORs mediate this effect, we stereotaxically injected the long-
lasting KOR antagonist norBNI into the DR or VS. NorBNI in-
jected into the DR did not significantly affect the increased
surface SERT immunoreactivity in the VS caused by R-FSS (n =
3-5; two-way ANOVA; interaction of brain region and R-FSS,
F 15 = 13.50, p < 0.003; followed by Bonferroni’s post hoc,
norBNI DR control vs norBNI DR R-ESS, p < 0.01) (Fig. 7a). In
contrast, norBNI injection in the nucleus accumbens completely
blocked the stress-induced increase in SERT surface expression in
the VS (Bonferroni’s post hoc, norBNI VS control vs norBNI VS
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Figure 5.  R-FSS-induced increases in 5-HT uptake by SERT and SERT surface expression
require GRK3 and p38a MAPK in serotonergic neurons. a, RDEV data demonstrating that the
R-FSS-induced increase in the rate of 5-HT uptake by SERT required GRK3 (two-way ANOVA
followed by Bonferroni’s post hoc test; n = 6—8). b, RDEV data demonstrating that R-FSS
increased the rate of 5-HT uptake by SERT in p38a:** but not in p38eCKO®™** mice (two-way
ANOVA followed by Bonferroni’s post hoc test; n = 6—8). ¢, Representative Western blot
images and corresponding analysis showing that R-FSS increased SERT surface expression in a
GRK3-dependent manner (two-way ANOVA followed by Bonferroni's post hoc test; n = 4).d,
Representative Western blot images and corresponding analysis showing that R-FSS increased
SERT surface expression in a p38 MAPK-dependent manner (two-way ANOVA followed by
Bonferroni's post hoctest; n = 5—8). e, Representative Western blotimages and corresponding
analysis showing that the GRK3 genotype or R-FSS did not change total SERT expression (two-
way ANOVA; n = 4). f, Representative Western blotimages and corresponding analysis show-
ing that the p38a: MAPK genotype or R-FSS did not change total SERT expression (two-way
ANOVA; n = 4-8). Data are shown as mean = SEM. *p << 0.05; **p << 0.01; ***p << 0.001.

R-ESS, p > 0.05) (Fig. 7a). No change in total SERT immunore-
activity was evident (n = 3-5; two-way ANOVA; interaction of
brain region and R-FSS, F, ,,, = 0.477, p > 0.05) (Fig. 7b). These
results suggest that local KOR in the VS mediate the stress-
induced increase in surface SERT expression.

Stress exposure results in the release of CRF, leading to the
release of endogenous dynorphin and subsequent activation of
KOR (Land et al., 2008). KOR activation leads to the phosphor-
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Figure 6.  SERT surface expression in selectively increased in the ventral striatum following
R-FSS. a, Representative Western blot images and corresponding analysis showing that R-FSS
increased SERT surface expression only in the ventral striatum (unpaired, two-tailed t test;n =
4-6). b, Representative Western blot images and corresponding analysis showing that R-FSS
did not change total SERT expression in any of the brain regions investigated (two-way ANOVA;
n = 3-6). Data are shown as mean = SEM. *p <C 0.05. Hippo, Hippocampus, Amyg,
amygdala.

ylation of serine-369 on its C-terminal tail by GRK3 (McLaughlin
et al., 2003b). To visualize activated KOR using immunohisto-
chemistry, an antibody that recognizes phosphorylated serine-
369 was developed (McLaughlin et al., 2003b). To investigate
whether CRF causes dynorphin release in the NAc, wild-type and
KOR (—/—) were injected intracerebroventricularly with either
saline or CRF (1 ug/5 wl). Immunohistochemical analysis
showed that CRF caused an increase in KORp immunoreactivity
within the NAc that was absent in KOR (—/—), suggesting that
stress leads to the release of dynorphin and activation of KOR
within the NAc (Fig. 7¢).

KOR-mediated CPA requires SERT

These results suggested that stress-induced release of dynorphin
within the nucleus accumbens activates p38a MAPK in the sero-
tonergic projections from the dorsal raphe nucleus and that the
local translocation of SERT from an endosomal vesicle to the
plasma membrane mediates the stress response. Consistent with
this concept, we found that SERT (+/—) and (—/—) mice did not
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show U50,488 CPA, whereas wild-type a
SERT (+/+) littermates showed robust

VS Surface SERT b

Schindler et al.  Stress Translocates SERT in the Ventral Striatum

VS Total SERT

CPA [n = 7-12; one-way ANOVA; F, 57, [_IControl [ IControl
= 4.023, p < 0.031; followed by Bonfer- IR-FSS ke IR-FSS
roni’s post hoc, SERT (+/+) vs (+/—), § 1.751 kx —=22—— (_3 1.75-

p < 0.05; SERT (+/+) vs (—=/—), p < — =

0.05], demonstrating that SERT was re- S 1.507 8 1.507

quired for k-mediated aversion (Fig. 8b). 8 1.25- 8 1.25-

We next generated a bicistronic lentiviral gJ C>|_J .
vector (Maskos et al., 2005; Land et al., ~ © 1.00- 1 © 1.00- T
2009) to express hSERT-GFP under the (0] @

PGK promoter (lenti-SERT) in SERT 90‘75- 8)0'75-

(—/—) mice (Fig. 8a). To assess whether E 0.50- 2 0.50-

KOR regulation of SERT was sufficient for & O

U50,488 CPA, we stereotaxically injected 2 0.257 $0.257

lenti-SERT into the DR of SERT (—/—) 2 o

mice. We had demonstrated previously
that lentiviral-mediated gene transfer did
not nonspecifically affect this behavior
(Land et al., 2009). Lenti-SERT-injected
mice showed a significant recovery of
k-mediated CPA (n = 4-7; unpaired,
two-tailed ¢ test; £, = 2.857, p < 0.019).
To confirm that SERT expression driven
by the lenti-SERT vector restored the nor-
mal translocation response, we generated
whole-brain synaptosomes and found
that SERT surface expression was in-
creased following R-FSS (Fig. 8c¢). These
data further support the suggested in-
volvement of serotonergic projections
from the DR to the VS in k-mediated
CPA.

Discussion

The present study elucidates a novel signal
transduction cascade within the afferent
nerve terminals projecting from the dor-
sal raphe to the ventral striatum that is
activated by the endogenous dynorphin
opioids following repeated stress expo-
sure and underlies prodepressive and
proaddictive behaviors in mice. Although
both SERT and KOR regulation have been
strongly implicated in the aversive effects
of stress exposure, the present study de-
scribes a molecular link for these two me-
diators and identifies the brain region
involved. Together these data suggest that
a component of KOR-mediated stress be-
haviors results from modulation of sero-
tonergic tone within the ventral striatum and requires both
GRK3 and p38a MAPK activation.

Although the FSS assay is a well-established behavioral stress
model, and withdrawal from drugs of abuse including cocaine or
nicotine is stressful (Parsons et al., 1995; Turchan et al., 1998;
Kenny and Markou, 2001; Awtry and Werling, 2003; Koob and Le
Moal, 2005; Jackson et al., 2010), stress-induced regulation of
SERT and a possible role for KOR have not been established.
Numerous studies have examined the effects of various stressors
on 5-HT turnover (an indirect measure of serotonergic activity),
5-HT release using microdialysis, [*H]-5-HT uptake in brain
tissue, and [ *H]-paroxetine binding to SERT in multiple rodent

Figure 7.

norBNI DR norBNI NAc

S WT Saline

norBNI DR norBNI NAc

KOR -/- CRF

Local KORs mediate increases SERT surface expression in the ventral striatum following R-FSS. a, Representative
Western blot images and corresponding analysis showing that R-FSS increased SERT surface expression in the ventral striatum
when norBNI was microinjected into the dorsal raphe but not into the nucleus accumbens (two-way ANOVA followed by Bonfer-
roni's post hoc test; n = 3-5). b, Representative Western blot images and corresponding analysis showing that norBNI microin-
jection into the dorsal raphe or nucleus accumbens or R-FSS did not change total SERT expression in the ventral striatum (two-way
ANOVA; n = 3-5). ¢, Low power (10><) and high power (40 <) representative fluorescent images displaying KORp immunore-
activity (green) and GAD67 (red) in the nucleus accumbens of animals treated with 0.9% saline or CRF (1 /5 wl). CRF-induced
dynorphin release increased KORpimmunoreactivity in WTs compared to saline controls. CRF-induced KORp immunoreactivity was
speific, as it is absent in animals lacking KOR. Data are shown as mean = SEM. **p < 0.01 comparing norBNI DR control with
norBNI DR R-FSS; ***p < 0.003 comparing norBNI DR R-FSS with norBNI NAc R-FSS. Scale bars: ¢, top, 400 m; bottom, 100 m.

species and strains with conflicting results (Watanabe et al., 1993;
Kirby et al., 1995; Adell et al., 1997; Berton et al., 1999; Connor et
al., 1999a,b; Martin et al., 2000; El Yacoubi et al., 2003; Racca et
al., 2005; Lee et al., 2007). Importantly, no previous studies have
identified a role for k-mediated regulation of SERT in swim stress
or withdrawal from repeated nicotine, or used the FSS paradigm
that we have shown previously can cause an norBNI-sensitive
increase in immobility, odorant-swim stress aversion, and poten-
tiation of cocaine CPP and of nicotine CPP.

Using the sensitive RDEV method for quantifying neu-
rotransmitter uptake kinetics (Hagan et al., 2010), we found that
various potent stressors increased the rate of 5-HT uptake by
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that R-FSS increased SERT V. without
affecting K, suggesting that repeated
stress increases surface SERT expression.
Interestingly, pharmacological stimula-
tion of AR; increased SERT surface ex-
pression by an increase in SERT
exocytosis and not a decrease in endocy-
tosis of existing surface SERT (Zhu et al.,
2004). Parallel experiments will be required
to determine whether stress-induced in-
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ocytosis, however, the current results sug-
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gest that p38 MAPK may phosphorylate an
undefined substrate in the vesicle fusion
machinery to stimulate SERT translocation.
Previously published results have shown
that DAT can be modulated by stress
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Figure 8.  SERT is required for k-mediated conditioned place aversion. a, Schematic of lentiviral construct for expression of

SERT-GFP. LTR, Long terminal repeat; RRE, Rev response element; FLAP, 99 bp DNA “flap” (enhances infection of nondividing cells);
PGK, human PGK promoter; WPRE, woodchuck hepatitis B virus posttranscriptional regulatory element (enhances RNA stability
and transgene expression); AU3, deletion of U3 region of 3’ long terminal repeat (renders integrated virus replication
incompetent). b, Preference test data demonstrating that SERT is required for conditioned place aversion to the KOR
agonist U50,488 (one-way ANOVA followed by Bonferroni’s post hoc test; n = 7-12). ¢, Representative Western blot
images showing that R-FSS increased SERT surface expression when lenti-SERT was expressed in SERT (—/—) mice. d,
Diagram depiction modeling the proposed mechanism by which stress-induced KOR and p38c: MAPK activation cause
increase in surface SERT expression within the ventral striatum and a subsequent decrease in extracellular serotonin levels.

*p << 0.05 for the comparisons marked.

SERT in an norBNI-dependent manner. SERT K, and V,,,, can
also be modulated by other GPCRs such as the adenosine recep-
tor (AR), the serotonin 1B receptor (5-HT, ), and the a2 adren-
ergic receptor, in addition to PKC, PKG, and p38 MAPK (Steiner
et al., 2008; Ramamoorthy et al., 2011). Similar to the reported

effects of AR agonist treatment and PKG activation, we found

SERT Genotype

R-FSS

exposure and by numerous GPCRs and ki-
nases (Ramamoorthy et al., 2011); however,
in the present study, we found that R-FSS
did not significantly affect DAT. Neverthe-
less, a role for KOR regulation of dopamine
in aversion is not excluded by the current
study.

Although an acute 15 min FSS expo-
sure causes dynorphin release and subse-
quent KOR activation (as demonstrated
by norBNI-sensitive stress-induced anal-
gesia), acute KOR activation was not suf-
ficient to cause an norBNI-sensitive
increase in immobility, potentiation of
cocaine CPP, or p38 MAPK activation
(McLaughlin et al., 2003a; Bruchas et al.,
2007a; Schindler et al., 2010). Sustained
KOR activation was required for GRK3
and p38 activation, and both were re-
quired for KOR-mediated immobility
and CPA (Bruchas et al., 2007a). Addi-
tionally, p38a MAPK in serotonergic neu-
rons has been shown to mediate aversive
stress responses (Bruchas etal., 2011), and
in the current study we integrate these
previous results to demonstrate that
stress-induced potentiation of cocaine
CPP and increases in SERT surface ex-
pression in the nerve terminals of the se-
rotonergic neurons are also GRK3 and
p38a MAPK dependent.

Stress-induced potentiation of the re-
warding effects of other drugs of abuse in-
cluding nicotine (Smith et al., 2012) and
ethanol (Sperling et al., 2010) are possibly
mediated by similar mechanisms, but fur-
ther studies will be required to determine
whether the actions of other psycho-
stimulants, including amphetamine, also
require KOR-mediated effects on SERT function. Together, these
data suggest that the prodepressive and proaddictive effects of
stress share common signaling mechanisms. The idea that stress
exposure results in a dysphoric state that leads to potentiation of
drug seeking and drug reinstatement was suggested previously
(Koob, 2008; Bruchas et al., 2010; Schindler et al., 2010), and the

2
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present study supports the concept that these behavioral re-
sponses may be a consequence of transient hyposerotonergic
tone in the nucleus accumbens. While dysphoria (like pain) is an
internal emotional state that cannot be directly or objectively
quantified, humans taking k-selective agonists report dysphoria
(Pfeiffer etal., 1986), and dysphoria can result in behavioral aver-
sion, which can be objectively measured.

R-FSS increases dynorphin release (Shirayama et al., 2004)
and KOR activation within the NAc (Land et al., 2008). cAMP
response element-binding protein (CREB) within the NAc is in-
creased in response to stress and positively regulates dynorphin
gene expression in that brain region (Carlezon et al., 1998; Pliakas
et al., 2001). Overexpression of CREB within the NAc produces
prodepressive effects, and this is blocked by the KOR antagonist
norBNI, suggesting that CREB-induced expression of dynorphin
mediates the prodepressive effects observed in the present study
(Carlezon et al., 1998; Pliakas et al., 2001). Ultrastructural local-
ization studies demonstrated that dynorphin is in GABAergic D1
type medium spiny neurons, and dynorphin-expressing termi-
nals appose KOR-containing terminals within the NAc (Svingos
etal., 1999; Ma et al., 2003; Hara et al., 2006). Thus, local release
of dynorphin from MSNs may activate KORs expressed on DR
afferents to the NAc, leading to increased serotonin uptake and a
hyopserotonergic tone.

Both increases and decreases in serotonergic tone within the
NAc have been previously linked to stress responses and may
underlie several neuropsychiatric diseases. Olfactory bulbecto-
mized rats, a model of depression, are hyposerotonergic in the
NAc (Connor et al., 1999a), and Wistar—Kyoto rats, hyperre-
sponsive to stress, demonstrate decreased serotonergic respon-
sivity in the NAc (De La Garza and Mahoney, 2004).
Additionally, infusion of the SSRI fluoxetine into the NAc de-
creased immobility and increased active coping mechanisms in
the forced swim test (Chau et al., 2011), and infusion of the SSRI
sertraline into the NAc abolished the cocaine-withdrawal-
induced increase in cocaine CPP (Harris et al., 2001). Depletion
of NAc serotonin by 5,7-dihydroxytryptamine increased the in-
centive value of cocaine as assessed by breakpoint (Loh and Rob-
erts, 1990), increased morphine self-administration (Smith et al.,
1987), and increased responding for a conditioned reward
(Fletcher et al., 1999). Conversely, systemic blockade of 5-HT(2C) re-
ceptors inhibit nicotine self-administration (Fletcher et al.,
2012). Air puff, a mild stressor, increased the 5HT metabolite
5-hydroxindole-3-acetic acid within the NAc (Merali et al,
1997). Thirty minutes of forced swim stress caused a prolonged
elevation in NAc serotonin levels as measured by microdialysis
(Kirby et al., 1995), but one 15 min swim followed 24 h later by
one 5 min swim resulted in no change to NAc serotonin levels
(Kirby and Lucki, 1997). Systemic salvinornin A, a KOR agonist,
decreased NAc extracellular levels of DA but not 5-HT in rats
(Carlezon et al., 2006), but not in mice (Zhang et al., 2005). The
mixed results are potentially due to differences in measurement
technique used, species/strain differences, and, most impor-
tantly, the type and timing of the stress exposure.

Extracellular serotonin levels are thought to regulate mood
(Coppen and Doogan, 1988; Haenisch and Bonisch, 2011), and
increased SERT function has been shown to increase behavioral
despair in mice (Zhu et al., 2010). Here we demonstrated that
KOR-mediated aversion is absent in SERT knock-out mice, dem-
onstrating an integral role for SERT in this behavior. Addition-
ally, 5-HT depletion has been shown to increase cocaine seeking
(Walsh and Cunningham, 1997). Kappa-mediated aversion was
blocked by pretreatment with the SERT inhibitor citalopram
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(Bruchas et al., 2011), footshock-induced reinstatement of alco-
hol self-administration was blocked by pretreatment with the
SERT inhibitor fluoxetine (Lé et al., 1999), and in the present
study we demonstrate that k-mediated potentiation of cocaine
CPP was also blocked by pretreatment with citalopram, support-
ing the hypothesis that stress- and k-mediated effects occur at
least in part through regulation of the serotonergic system. Ad-
ditional studies are required to elucidate the downstream effects
of a stress-induced hyposerotonergic state in the ventral striatum.
Additional work is also required to identify which of the sero-
tonin receptor(s) are involved, whether they are located presyn-
aptically or postsynaptically, and how they locally affect NAc
signal processing.

In conclusion, the present study demonstrates that repeated
but not acute swim stress increases SERT function and ventral
striatum surface expression through a KOR- and p38a MAPK-
dependent manner, and implicates this molecular process in
stress-induced behaviors such as immobility, aversion, and
addiction risk. Additionally, this study raises the possibility
that KOR antagonists may promote stress resilience, and fur-
ther implicates the k receptor in the negative aspects of the
stress response.
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